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Theorem 1.Let G be a graph with average degree d(G) and g(G) ≥ 2q+1, then G has cycles
of Ω(dg) consecutive even length.

(We use three lemmas. )

Lemma 1.Let G be s.t. δ(G) ≥ 6(d + 1), and girth ≥ 2q + 1, then for ∀X ⊆ V (G) with

|X| ≤ 1

3
dg, we have |N(X)| > 2|X|.

Proof:Suppose |N(X)| ≤ 2|X|, for some X ⊆ V (G), let H = G[X ∪N(X)], so V (H) ≤ 3|X|
and

e(H) ≥ 1

2

∑
v∈X

dG(v) ≥ 3(d+ 1)|X| ≥ (d+ 1)|V (H)|.

So H has a subgraph H ′ with δ(H ′) ≥ d+ 1. Apply moore bound to H ′,

3|X| ≥ |V (H ′)| ≥ 1 + (d+ 1)
∑
i<g

di > dg =⇒ |X| > 1

3
dg,

a contradiction.

Posa Lemma.If G is a praph s.t. |N(X)| > 2|X| for ∀X ⊆ V (G) with |X| ≤ t, then G
contains a cycle of length at least min{3t, n} with a chord.

Lemma 4.If G(Li, Li+1) has a cycle C of length 2l with a chord, then for some 1 ≤ m ≤ i, G
has cycles

C2m+2, C2m+4, ..., C2m+2l−2.

Proof of Theorem:Let G be a graph with d(G) ≥ 48(d+ 1) and girth ≥ 2g+ 1, then G has
a bipartite graph H with d(H) ≥ 24(d+ 1),

e(H) =
∑
i≥0

e(Li, Li+1) ≥
d(H)n

2
= 12n(d+ 1),

then ∃i, s.t.
e(Li, Li+1) ≥ 6(d+ 1)(|Li|+ |Li+1|).

Assume not,

e(H) < 6(d+ 1)[(|L0|+ |L1|) + (|L1|+ |L2|) + ...+ (|Lt−1|+ |Lt|)]

for some t, it
= 6(d+ 1)(2n− |L0| − |Lt|),
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then H(Li, Li+1) has a subgraph H ′ with δ(H ′) ≥ 6(d+ 1) and girth ≥ 2g + 1.

By above lemma, ∀X ⊆ V (G) with |X| ≤ 1

3
dg, |N(X)| > 2|X|.

By Posa lemma, pick t =
1

3
dg, so H ′ has a cycle of length ≥ dg with a chord.

By lemma 4, G has Ω(dg) cycles of consecutive even lengths.

Depentent Random Choice:

lemma 2.Let a, d,m, n, r be positive integers. Let G be a graph with |V | = n, and average

d =
2|E(G)|

n
. If ∃ a positive integer t, s.t.

dt

nt−1 −
(
n

r

)
(
m

n
)t ≥ a,

then G contains a subset U of at least a vertices s.t. every r vertices in U have at least m
common neighbors.

Proof:Pick a set T of t vertices of V uniformly at random with repetition. Set A = N(T ),
and let X denote the size of A, then the probability that v ∈ V (G) is an element of A equals

(
N(v)

n
)t. So by Jensen′sInequality, we have

E[X] =
∑

v∈V (G)

(
|N(v)|
n

)t = n−t
∑

v∈V (G)

|N(v)|2

≥ n1−t(

∑
v∈V (G)

|N(v)|

n
)t = n1−t(

dn

n
)t =

dt

nt−1 .

let Y be the random variable counting the number of subsets S ⊆ A of size r with fewer than
m common neighbors.

For a given S, the probability that it is a subset of A is (
|N(S)|
n

)t. So

E[Y ] =
∑
S

(
|N(S)|
n

)t ≤
(
n

r

)
(
|N(S)|
n

)t <

(
n

r

)
(
m

n
)t,

then

E[X − Y ] ≥ dt

nt−1 −
(
n

r

)
(
m

n
)t ≥ a.

Hence there ∃ a choice of T for with the conesponding set A = N(T ) satisfies X − Y ≥ a.
Delete one vertex from each subset S of A of size r with fewer than m common neighbors.
Let U be the remaining subset, then |U | ≥ a and all subsets of size r have at least m common
neighbors.
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Theorem 2.If H = (A∪B,F ) is a bipartite graph in which all vertices in B have degree ≤ r,
then

ex(n,H) ≤ cH
−

1

r ,

where c = c(H) is only depends on H.

Proof:Using lemma 2:

Let a = |A|, b = |B|,m = a+ b, t = r, and c=max{a
1

r ,
em

r
}.

Suppose G with v(G) = n and e(G) > cn
2−

1

r , then the average degree d ≥ 2cn
1−

1

r .

dt

nt−1 −
(
n

r

)
(
m

n
)t ≥ (2cn

1−
1

r )r

nr−1 − nr

r!
(
m

n
)r

= (2c)r − mr

r!
≥ (2c)r − (

em

r
)r.

(because r! ≥ (
r

e
)r ≥ (2c)r − cr = (2r − 1)cr ≥ a)

Then we can find a vertex subset U of G with |U | = a, s.t. all subsets of U of size r have ≥ m
common neighbors.
Now we prove H ⊆ G:
We will find an embedding of H in G given by an injection

f : A ∪B −→ V (G).

Start by defining an injection
f : A −→ U

arbitrarily. Label the vertices of B as v1, v2, ..., vb, we embed the vertices of B in this order
one vertex at a time.
Suppose we need to embed vi ∈ B, let Ni ∈ A be those vertices of H adjacent to vi, so
|Ni| ≤ r.
Since f(Ni) ⊆ U , and |f(Ni)| ≤ r,there are ≥ a+ b vertices adjacent to all vertices in f(Ni).
As the number of vertices already embedded ≤ a + b. Then ∃w ∈ V (G) which not be used
and is adjacent to all vertices in f(Ni) set f(vi) = w. A contradiction!
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