Extremal And Probabilistic Graph Theory
May 5th Thursday

Theorem 1.Let G be a graph with average degree d(G) and g(G) > 2g+1, then G has cycles
of Q(d?) consecutive even length.

(We use three lemmas. )

Lemma 1.Let G be s.t. §(G) > 6(d + 1), and girth > 2¢ + 1, then for VX C V(G) with
1
| X| < gdg, we have |N(X)| > 2|X].

Proof:Suppose |N(X)| < 2|X|, for some X C V(G), let H =G[X UN(X)], so V(H) < 3|X]|
and

1
e(H) > §Zda<v> > 3(d+1)|X]| > (d+1)|V(H)|.
So H has a subgraph H' with §(H’) > d + 1. Apply moore bound to H’,
! % 1
BIX| > [V(H)| 214 (d+ 1)) d > d = |X| > 34",
1<g
a contradiction.

Posa Lemma.lf G is a praph s.t. |[N(X)| > 2|X| for VX C V(G) with |X]| < ¢, then G
contains a cycle of length at least min{3¢,n} with a chord.

Lemma 4.If G(L;, L;11) has a cycle C of length 2[ with a chord, then for some 1 <m <i, G
has cycles
C2m+27 02m+47 ceey C2m+21—2-

Proof of Theorem:Let G be a graph with d(G) > 48(d + 1) and girth > 2g + 1, then G has
a bipartite graph H with d(H) > 24(d + 1),

d(H)n
e(H) = Ze(Lz‘, Liy1) > (2> = 12n(d + 1),

>0

then di, s.t.
e(Li, Liz1) > 6(d + 1)(| Li| + [Liya])-

Assume not,
e(H) <6(d+ 1)[(|Lo| + [La]) + (| La| + [Lof) + . + ([Loca| + [ Le])]

for some t, it
= 6(d +1)(2n — [Lo| — L),

1



then H(L;, L;11) has a subgraph H' with §(H’) > 6(d + 1) and girth > 2¢ + 1.
1
By above lemma, VX C V(G) with | X| < gdg, IN(X)| > 2|X].

1
By Posa lemma, pick t = gdg , so H' has a cycle of length > d9 with a chord.

By lemma 4, G has (d9) cycles of consecutive even lengths.
Depentent Random Choice:

lemma 2.Let a,d, m,n,r be positive integers. Let G be a graph with |V| = n, and average

2|E(G
d= M If 9 a positive integer t, s.t.

n
dt n\,m
() za

then G contains a subset U of at least a vertices s.t. every r vertices in U have at least m
common neighbors.

Proof:Pick a set T of ¢ vertices of V' uniformly at random with repetition. Set A = N(T'),
and let X denote the size of A, then the probability that v € V(G) is an element of A equals

N
(ﬂ)t So by Jensen'sInequality, we have
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let Y be the random variable counting the number of subsets S C A of size r with fewer than
m common neighbors.

[V(S)

For a given S, the probability that it is a subset of A is ( ‘)t So
n
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then

d* n\ ,m.,
EX-Y]> . (r>(5) > q.
Hence there 3 a choice of 7' for with the conesponding set A = N(7') satisfies X —Y > a.
Delete one vertex from each subset S of A of size r with fewer than m common neighbors.
Let U be the remaining subset, then |U| > a and all subsets of size r have at least m common
neighbors.



Theorem 2.If H = (AU B, F) is a bipartite graph in which all vertices in B have degree < r,

then
1

ex(n,H) < CH_;,
where ¢ = ¢(H) is only depends on H.

Proof:Using lemma 2:

1
Let a = |A],b= |B],m =a+b,t =r, and c:max{a;, @}.
,
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Suppose G with v(G) =n and e(G) > cn 7, then the average degree d > 2cn 7
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(because r! > (f)r > (20)" =" =(2"=1) >a)
e
Then we can find a vertex subset U of G with |U| = a, s.t. all subsets of U of size r have > m
common neighbors.
Now we prove H C G
We will find an embedding of H in G given by an injection

fAUB — V(G).

Start by defining an injection
f:A—U

arbitrarily. Label the vertices of B as vy, vs, ..., v, we embed the vertices of B in this order
one vertex at a time.

Suppose we need to embed v; € B, let N; € A be those vertices of H adjacent to v;, so
Since f(N;) C U, and |f(N;)| < r,there are > a + b vertices adjacent to all vertices in f(1V;).
As the number of vertices already embedded < a + b. Then Jw € V(G) which not be used
and is adjacent to all vertices in f(1V;) set f(v;) = w. A contradiction!



