Extremal And Probabilistic Graph Theory May 5th Thursday

Theorem 1.Let G be a graph with average degree d(G) and $g(G) \ge 2q + 1$, then G has cycles of $\Omega(d^g)$ consecutive even length.

(We use three lemmas.)

Lemma 1.Let G be s.t. $\delta(G) \geq 6(d+1)$, and girth $\geq 2q+1$, then for $\forall X \subseteq V(G)$ with $|X| \leq \frac{1}{3}d^g$, we have |N(X)| > 2|X|.

Proof:Suppose $|N(X)| \le 2|X|$, for some $X \subseteq V(G)$, let $H = G[X \cup N(X)]$, so $V(H) \le 3|X|$ and

$$e(H) \ge \frac{1}{2} \sum_{v \in X} d_G(v) \ge 3(d+1)|X| \ge (d+1)|V(H)|.$$

So H has a subgraph H' with $\delta(H') \geq d+1$. Apply moore bound to H',

$$3|X| \ge |V(H')| \ge 1 + (d+1) \sum_{i \le g} d^i > d^g \Longrightarrow |X| > \frac{1}{3} d^g,$$

a contradiction.

Posa Lemma.If G is a praph s.t. |N(X)| > 2|X| for $\forall X \subseteq V(G)$ with $|X| \leq t$, then G contains a cycle of length at least min $\{3t, n\}$ with a chord.

Lemma 4.If $G(L_i, L_{i+1})$ has a cycle C of length 2l with a chord, then for some $1 \leq m \leq i$, G has cycles

$$C_{2m+2}, C_{2m+4}, ..., C_{2m+2l-2}.$$

Proof of Theorem:Let G be a graph with $d(G) \ge 48(d+1)$ and girth $\ge 2g+1$, then G has a bipartite graph H with $d(H) \ge 24(d+1)$,

$$e(H) = \sum_{i \ge 0} e(L_i, L_{i+1}) \ge \frac{d(H)n}{2} = 12n(d+1),$$

then $\exists i, s.t.$

$$e(L_i, L_{i+1}) \ge 6(d+1)(|L_i| + |L_{i+1}|).$$

Assume not,

$$e(H) < 6(d+1)[(|L_0| + |L_1|) + (|L_1| + |L_2|) + \dots + (|L_{t-1}| + |L_t|)]$$

for some t, it

$$= 6(d+1)(2n - |L_0| - |L_t|),$$

then $H(L_i, L_{i+1})$ has a subgraph H' with $\delta(H') \geq 6(d+1)$ and girth $\geq 2g+1$. By above lemma, $\forall X \subseteq V(G)$ with $|X| \leq \frac{1}{3}d^g$, |N(X)| > 2|X|.

By Posa lemma, pick $t = \frac{1}{3}d^g$, so H' has a cycle of length $\geq d^g$ with a chord. By lemma 4, G has $\Omega(d^g)$ cycles of consecutive even lengths.

Depentent Random Choice:

lemma 2.Let a, d, m, n, r be positive integers. Let G be a graph with |V| = n, and average $d = \frac{2|E(G)|}{n}$. If \exists a positive integer t, s.t.

$$\frac{d^t}{n^{t-1}} - \binom{n}{r} (\frac{m}{n})^t \ge a,$$

then G contains a subset U of at least a vertices s.t. every r vertices in U have at least m common neighbors.

Proof:Pick a set T of t vertices of V uniformly at random with repetition. Set A = N(T), and let X denote the size of A, then the probability that $v \in V(G)$ is an element of A equals $(\frac{N(v)}{r})^t$. So by Jensen's Inequality, we have

$$E[X] = \sum_{v \in V(G)} (\frac{|N(v)|}{n})^t = n^{-t} \sum_{v \in V(G)} |N(v)|^2$$

$$\geq n^{1-t} \left(\frac{\sum\limits_{v \in V(G)} |N(v)|}{n}\right)^t = n^{1-t} \left(\frac{dn}{n}\right)^t = \frac{d^t}{n^{t-1}}.$$

let Y be the random variable counting the number of subsets $S \subseteq A$ of size r with fewer than m common neighbors.

For a given S, the probability that it is a subset of A is $(\frac{|N(S)|}{n})^t$. So

$$E[Y] = \sum_{S} (\frac{|N(S)|}{n})^t \le \binom{n}{r} (\frac{|N(S)|}{n})^t < \binom{n}{r} (\frac{m}{n})^t,$$

then

$$E[X - Y] \ge \frac{d^t}{n^{t-1}} - \binom{n}{r} \left(\frac{m}{n}\right)^t \ge a.$$

Hence there \exists a choice of T for with the conesponding set A = N(T) satisfies $X - Y \ge a$. Delete one vertex from each subset S of A of size r with fewer than m common neighbors. Let U be the remaining subset, then $|U| \ge a$ and all subsets of size r have at least m common neighbors. **Theorem 2.**If $H = (A \cup B, F)$ is a bipartite graph in which all vertices in B have degree $\leq r$, then

$$ex(n,H) \le cH^{-\frac{1}{r}},$$

where c = c(H) is only depends on H.

Proof:Using lemma 2:

Let a = |A|, b = |B|, m = a + b, t = r, and $c = \max\{a^{\frac{1}{r}}, \frac{em}{r}\}.$

Suppose G with v(G) = n and $e(G) > cn^{2-\frac{1}{r}}$, then the average degree $d \ge 2cn^{1-\frac{1}{r}}$.

$$\frac{d^t}{n^{t-1}} - \binom{n}{r} (\frac{m}{n})^t \ge \frac{(2cn^{1-\frac{1}{r}})^r}{n^{r-1}} - \frac{n^r}{r!} (\frac{m}{n})^r$$
$$= (2c)^r - \frac{m^r}{r!} \ge (2c)^r - (\frac{em}{r})^r.$$

(because $r! \ge (\frac{r}{e})^r \ge (2c)^r - c^r = (2^r - 1)c^r \ge a$)

Then we can find a vertex subset U of G with |U|=a, s.t. all subsets of U of size r have $\geq m$ common neighbors.

Now we prove $H \subseteq G$:

We will find an embedding of H in G given by an injection

$$f: A \cup B \longrightarrow V(G)$$
.

Start by defining an injection

$$f:A\longrightarrow U$$

arbitrarily. Label the vertices of B as $v_1, v_2, ..., v_b$, we embed the vertices of B in this order one vertex at a time.

Suppose we need to embed $v_i \in B$, let $N_i \in A$ be those vertices of H adjacent to v_i , so $|N_i| \leq r$.

Since $f(N_i) \subseteq U$, and $|f(N_i)| \le r$, there are $\ge a + b$ vertices adjacent to all vertices in $f(N_i)$. As the number of vertices already embedded $\le a + b$. Then $\exists w \in V(G)$ which not be used and is adjacent to all vertices in $f(N_i)$ set $f(v_i) = w$. A contradiction!